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Abstract
An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds
(‘hyper-Hamiltonian dynamics’) and sharing many of the attractive features
of standard Hamiltonian dynamics, was introduced in previous work. In this
paper, we discuss applications of the theory to physically interesting cases,
dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e.
the Pauli and the Dirac equations. While the free Pauli equation corresponds to
a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description
of the Dirac equation, and of the full Pauli one, is in terms of two commuting
hyper-Hamiltonian flows. In this framework one can use a factorization
principle discussed here (which is a special case of a general phenomenon
studied by Walcher) and provide an explicit description of the resulting flow.
On the other hand, by applying the familiar Foldy–Wouthuysen and Cini–
Tousheck transformations (and the one recently introduced by Mulligan) which
separate—in suitable limits—the Dirac equation into two equations, each of
these turn out to be described by a single hyper-Hamiltonian flow. Thus the
hyper-Hamiltonian construction is able to describe the fundamental dynamics
for particles with spin.

PACS numbers: 02.30.Hq, 02.40.Vh, 03.65.Pm, 45.20.Jj
Mathematics Subject Classification: 53D99, 37J99, 70H99

Introduction

In recent years, the attention of physicists has been called by hyper-Kahler structures [6, 7,
10, 33], and a number of works considering these from a physical point of view appeared, see
[20] and e.g. [2–4, 8, 11, 13, 14, 16, 22, 26, 32, 35, 36]. At the same time, these structures
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have also been the object of investigations from the point of view of pure geometry; see the
articles collected in [27].

In [18] one of us and Morando introduced a generalization of Hamilton mechanics in
4n-dimensional manifolds M, seen as the phase space of the theory, based on substituting the
familiar symplectic structure on M with a hyper-Kahler structure, i.e. with a triple Y1, Y2, Y3

of integrable complex structures as well as a Riemannian metric g on M. The manifold M is
required to be Kahler with respect to each of the complex structures, and thus they define a
triple of symplectic structures via the Kahler relation (see below). The complex structures
have to satisfy the quaternionic, i.e. su(2), relations YαYβ = −δαβI + εαβγ Yγ .

It was shown there that this generalization retains many of the appealing features
of Hamilton mechanics, in particular the possibility of a variational formulation and the
existence of canonical integrals (Poincaré and Poincaré–Cartan integral invariants) [18], and
that integrable systems with hyper-Hamiltonian structures have interesting features (basically
for a 4n-dimensional hyper-Hamiltonian dynamical system we need only n integrals of motion
in involution, rather than 2n, to affirm integrability in the Arnold–Liouville sense [5]). For
this matter see also [19].

In another paper by Morando and Tarallo [29], the problem of generalizing Hamilton
equations to systems with a quaternionic structure was analyzed from the point of view of
complex analysis; it is remarkable that this approach also naturally leads to the same equations
defined in [18].

As it should be obvious even from the above very sketchy description of what hyper-
Kahler structures are (a proper definition will be given below), these are naturally related to
spin structures. It is thus entirely natural, from the physical point of view, to investigate if and
to what extent the hyper-Hamiltonian dynamics defined in [18] is relevant to the physics of
systems with spin.

In this paper, we will show how hyper-Hamiltonian dynamics applies to physical equations
describing the evolution of the spin degrees of freedom of particles, i.e. to the Pauli and Dirac
equations.

Thus, after discussing in section 1 the general setting of hyper-Hamiltonian dynamics
in hyper-Kahler manifolds, in section 2, we specialize it to the Euclidean four-dimensional
space (we stress, to avoid any misunderstanding, that the four-dimensional space we deal
with later on is not the physical (Minkowski) spacetime, but the internal space C2 � R4

carrying a spin-1/2 representation of SU(2)). In section 3, we provide a general mathematical
result (‘factorization principle’) for hyper-Hamiltonian vector fields associated with conjugate
hyper-Kahler structures, which will be of use in later discussion; this is in the spirit of earlier
results by Walcher [34].

We then come to discuss equations describing the internal dynamics of spin-1/2 particles
in a magnetic field; in section 4, we deal with the Pauli equation, and in section 5 with the
Dirac and Majorana–Weyl equations; for these we only consider the internal dynamics (in the
C2 ⊕ C2 � R4 ⊕ R4 space of wavefunctions for spin degrees of freedom) of the spin degree
of freedom.

While the Majorana–Weyl equation is immediately set in a standard hyper-Hamiltonian
form (due to a degeneration of the Dirac equation for m = 0), the full Dirac equation defines a
flow which is the sum of two hyper-Hamiltonian ones, associated with conjugate hyper-Kahler
structures; the theorem discussed in section 3 allows us to deal with this case.

It is known that the free Dirac equation in C4 can be separated into two spinor C2

equations by means of non-local transformations, such as the Foldy–Wouthuysen (FW) one
[17] (appropriate in the non-relativistic limit) or the Cini–Touschek (CT) one [12] (appropriate
in the ultra-relativistic limit); the latter has been recently reconsidered by Mulligan [30]. In all
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these cases, of course, separation does not occur in the presence of an electromagnetic field,
albeit it can be obtained perturbatively up to a given order in a suitable expansion parameter
(e.g., in ε = h̄/mc2 for the FW case).

It turns out that in this case the full equation cannot be expressed as a hyper-Hamiltonian
flow; but it is still possible to express the equations in terms of two hyper-Hamiltonian vector
fields as above, and the theorem of section 3 still applies. Moreover, separation up to a given
order in the FW or CT sense corresponds to the fact that equations are expressed at low order
in terms of only one of the hyper-Hamiltonian structures, albeit both enter in higher order
terms. This is shown in section 6.

In section 7, we summarize our findings and briefly discuss them and possible further
extensions.

1. Hyper-Hamiltonian dynamics

Let (M, g) be a Riemannian manifold of dimension m = 4n. Assume that this is equipped
with three complex structures Yα (α = 1, 2, 3), i.e. three (1,1) tensor fields such that Y 2

α = −I ,
satisfying the quaternionic relations

YαYβ = εαβγ Yγ − δαβI (1)

(here and below ε is the completely antisymmetric Levi-Civita tensor).
Assume moreover that (M, g) is Kahler with respect to each of the Yα; we recall this

implies that the Kahler forms ωα defined by

ωα(v,w) := g(v, Yαw) (2)

are closed, dωα = 0. In this case, we say that (M, g;Yα), or M for short, is a hyper-Kahler
manifold.

We can associate with each complex structure a symplectic structure ωα by means of the
Kahler relation (2); in this sense a hyper-Kahler structure (manifold) can also be seen as a
‘hypersymplectic’ structure (manifold).

Remark 1. Two general classes of manifolds are immediately seen to admit hyper-Kahler
structures: these are quaternionic manifolds Hn � R4n; and the cotangent bundle M = T∗V
of any Hermitian manifold V . Other nontrivial hyper-Kahler manifolds are obtained from
these via the hyper-Kahler quotient construction (momentum map) introduced by Hitchin
et al in [20].

Consider now an ordered triple of arbitrary smooth functions Hα : M → R. We associate
with these a triple of vector fields by (no sum on α)

Xα ωα = dHα (3)

and define the hyper-Hamiltonian vector field X on M associated with the triple {Hα} as the
sum of these,

X :=
3∑

α=1

Xα. (4)

It is trivial to check that the Xα , and therefore X, are uniquely defined.
Let us now consider a local chart on M and local coordinates {x1, . . . , xm} on this; we

write as usual ∂i := (∂/∂xi). The Riemannian metric g will be represented in coordinates
by a (0,2) tensor field gij (x), the complex structure Y by a (1,1) tensor field Y i

j (x), and the
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symplectic form by a (0,2) tensor field Kij (x), i.e. ω = (1/2)Kij (x) dxi ∧ dxj . From now on
we will omit to write the dependence on x, for the ease of notation.

The Kahler relation (2) implies that

Kij = gipY
p

j . (5)

The relation X ω = dH means that KT
li X

i = ∂lH ; as K is nondegenerate we write
(KT )−1 := 	, and we can also rewrite this as Xi = 	ij∂jH . The hyper-Hamiltonian vector
field will thus be

Xi =
∑

α

Xi
α =

∑
α

	ij
α ∂jHα. (6)

Remark 2. It was shown in [18] (see the ‘final remarks’ there) that hyper-Hamiltonian
dynamics goes through the hyper-Kahler reduction mentioned in remark 1, in the same way
as Hamiltonian dynamics goes through the momentum map reduction.

2. Euclidean four-dimensional space

In order to fix ideas it is convenient to consider the simplest nontrivial case, i.e. M = R4 with
Euclidean metric gij = δij . This will actually suffice for our later applications.

In this case there are two ‘standard’ hyper-Hamiltonian structures [18]. One possible
choice of the complex structures is given by

Y1 =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠, Y2 =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞⎟⎟⎠, Y3 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞⎟⎟⎠ .

(7)

In this case the symplectic structures are given by

ω1 = dx1 ∧ dx2 + dx3 ∧ dx4, ω2 = dx1 ∧ dx4 + dx2 ∧ dx3,

ω3 = dx1 ∧ dx3 + dx4 ∧ dx2.
(8)

Note that with 
 the standard volume form in R4, we have ωα ∧ωα = 2
 (no sum on α). The
hyper-Hamiltonian equations of motion (6) are given by

ẋ1 = ∂2H1 + ∂4H2 + ∂3H3, ẋ2 = −∂1H1 + ∂3H2 − ∂4H3,

ẋ3 = ∂4H1 − ∂2H2 − ∂1H3, ẋ4 = −∂3H1 − ∂1H2 + ∂2H3.
(9)

Another possible choice of the complex structures is given by

Ŷ1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , Ŷ2 =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ , Ŷ3 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠.

(10)

The corresponding symplectic structures are

ω̂1 = dx1 ∧ dx3 + dx2 ∧ dx4, ω̂2 = dx4 ∧ dx1 + dx2 ∧ dx3,

ω̂3 = dx2 ∧ dx1 + dx3 ∧ dx4.
(11)
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The equations of motion we obtain from these are

ẋ1 = ∂3H1 − ∂4H2 − ∂2H3, ẋ2 = ∂4H1 + ∂3H2 + ∂1H3,

ẋ3 = −∂1H1 − ∂2H2 + ∂4H3, ẋ4 = −∂2H1 + ∂1H2 − ∂3H3.
(12)

We will refer to these hyper-Kahler (hypersymplectic) structures as standard, and
correspondingly we will also call ‘standard’ the associated hyper-Hamiltonian dynamics;
this is justified by some of the forthcoming remarks, see also [18].

The space R4 in which the Y, Ŷ act is of course isomorphic to C2, and conversely the
space C2 in which Pauli matrices act is isomorphic to R4. This isomorphism is however not
unique, and depends on the choice of a basis in R4. Thus our way to express equations in
which the Pauli matrices appear in terms of the Y, Ŷ matrices, will depend on this choice. As
in practice they always appear as iσµ, we are interested in the expression of these quantities in
terms of our quaternionic matrices.

With the basis

v̂1 =
(

1
0

)
, v̂2 =

(
i
0

)
, v̂3 =

(
0
1

)
, v̂4 =

(
0
i

)
(13)

we have

iσ0 � −Y1, iσ1 � Ŷ2, iσ2 � Ŷ1, iσ3 � Ŷ3. (14)

Choosing other bases would give different correspondences. For instance, if

v1 =
(

1
0

)
, v2 =

(
0
1

)
, v3 =

(
i
0

)
, v4 =

(
0
i

)
(15)

we have:

iσ0 � −Ŷ1, iσ1 � −Y2, iσ2 � Y1, iσ3 � −Y3. (16)

These correspondences will be of use in the following; we will work mainly with the basis
(13) and the correspondence (14).

Choosing still other bases would give a correspondence equivalent—via an SU(2)

automorphism—to either one of (14) or (16), depending on the orientation.

Remark 3. We note that

Y1 =
(

iσ2 0
0 iσ2

)
, Y2 =

(
0 σ1

−σ1 0

)
, Y3 =

(
0 σ3

−σ3 0

)
, (17)

Ŷ1 =
(

0 σ0

−σ0 0

)
, Ŷ2 =

(
0 −iσ2

−iσ2 0

)
, Ŷ3 =

(−iσ2 0
0 iσ2

)
. (18)

(Obviously by multiplying the three matrices of a structure by the same σα matrix we get an
equivalent one.) Actually, this notation may be misleading, as it refers to matrices acting in C4,
while the Y and Ŷ matrices should act—representing quaternionic operations—in H1 = R4.

Remark 4. If we consider the standard volume form 
 on R4, it is immediate to check that
(with no sum on α) (1/2)ωα ∧ ωα = 
 and (1/2)ω̂α ∧ ω̂α = −
. Thus {Yα} (respectively,
{Ŷα}) is said to be the standard positive-oriented (respectively, negative-oriented) hyper-Kahler
structure on (R4, δ). Note also that the ωα (respectively, the ω̂α) are a basis for the space of
self-dual (respectively, anti-self-dual) 2-forms in R4; thus we say that (9) describes self-dual
hyper-Hamiltonian dynamics and (12) describes the anti-self-dual one.

5
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Remark 5. If we let the matrices Yα act on the right (rather than on the left), this amounts to a
sign change, i.e. YR

α x := xYα = −Yαx. In this way of course we get YR
α YR

β = −εαβγ YR
γ −δαβI ,

and the correct relations are recovered by changing the order of the triple, e.g. interchanging
Y2 and Y3. The same holds for the Ŷα .

Remark 6. These structures are immediately extended to the case M = R4n, by having a copy
of it in each R4 block; note that in this case we can have structures corresponding to different
orientations in different blocks.

Remark 7. The same structures can also be introduced locally in M = T∗V with V Hermitian
(see remark 1). Indeed, consider on each local chart (U, ϕ) of M the two-dimensional
submanifold of V identified by the Hermitian structure, and the four-dimensional submanifolds
of M generated by these via the canonical 1-form on T∗M: these provide the decomposition
of ϕ(U) ⊂ R4n into four-dimensional blocks, and the previous remark applies.

3. A factorization principle for standard hyper-Hamiltonian dynamics

Looking at the Yα, Ŷα defined above, it is immediate to check that

[Yα, Ŷβ] = 0 ∀α, β. (19)

Note that if we have two linear—possibly time-dependent—vector fields

X+ = f i∂i, X− = gi∂i, (20)

corresponding to self-dual and anti-self-dual hyper-Hamiltonian dynamics in (R4, δ), these
are necessarily of the form

f i = Fα(t)(Yα)ij x
j := (K+)

i
j x

j ,

gi = Gα(t)(Ŷα)ij x
j := (K−)ij x

j ,
(21)

with F,G real functions.
We write the solution to ẋ = f (x, t) with initial datum x(0) = x0 as x(t) = ϕ+(t; x0),

and similarly the solution to ẋ = g(x, t) with x(0) = x0 as x(t) = ϕ−(t; x0).

Lemma. Consider the vector field X = X+ + X− with X± as in (20). Then the flow under X
with x(0) = x0 can be expressed as

x(t) = ϕ+[t;ϕ−(t; x0)] = ϕ−[t;ϕ+(t; x0)]. (22)

Proof. The flow under X satisfies

ẋi = f i(x) + gi(x) = [
(K+)

i
j + (K−)ij

]
xj := Ki

jx
j ; (23)

then the lemma affirms that the solution to

ẋ = f (x) + g(x) (24)

with x(0) = x0 is as in (22).
This follows simply from (19): indeed, the latter implies that [K+,K−] = 0, and using

this we get

x(t) = eKtx0 = e(K++K−)t x0 = eK+t [eK−t x0] = eK−t [eK+t x0]. (25)

This completes the proof. �

We refer to this lemma, or to (22), as a factorization principle. In fact, it says that the
‘sum’ of the two flows generated by X± can be expressed as the composition of the two. This
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is a special example of a situation studied in general by Walcher, see [34] (it is also a special
example of ‘superposition principle’ in the sense of Anderson, Fels and Vassiliou [1]).

In the following, we will see that this applies in a number of situations of physical interest
where a relevant equation can be expressed in terms of the ‘sum’ of two hyper-Hamiltonian
flows associated with conjugate hyper-Kahler structures.

Remark 8. It is clear that the factorization principle extends to standard structures in R4n and
T∗V , discussed in the remarks at the end of the previous section.

Remark 9. We stress that this result is based on the very existence of two non-equivalent
SU(2) real representations; this is a nontrivial fact, guaranteed by the real version of the Schur
lemma (see e.g. [23], chapter 8).

4. Hyper-Hamiltonian description of the Pauli equation

The natural physical application of the extension of Hamiltonian mechanics to the hyper-Kahler
case concerns, of course, spin systems. The non-relativistic evolution equation for particles
with spin 1/2 is provided by the Pauli equation, see e.g. [24]. (The hyper-Hamiltonian
framework for this equation has been considered elsewhere [18, 19] in the simplified setting
of no electric field.)

The 2-component wavefunction of a spin-1/2 charged particle with fixed momentum �p in
an electromagnetic field (note this will depend only on time, as it also follows from the fact we
are considering the momentum representation for the particle, i.e. its position is completely
undetermined) satisfies the Pauli equation

ih̄∂tϕ =
[(

1

2m
(�p − e �A)2 + e

)
σ0 − eh̄

2m
�σ �B

]
ϕ, (26)

where the fields  and �B depend only on time.
Using the basis (13), that is

ϕ =
(

χ

ζ

)
, �̂ =

⎛⎜⎜⎝
Re χ

Im χ

Re ζ

Im ζ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
χ+

χ−
ζ+

ζ−

⎞⎟⎟⎠ (27)

and the correspondence (14), we immediately get

∂t �̂ =
[
KY1 +

e

2m
(ByŶ1 + BxŶ2 + BzŶ3)

]
�̂, (28)

where

K = 1

h̄

(
1

2m
(�p − e �A)2 + e

)
. (29)

In other words, the Pauli equation is written as

∂t �̂ = Ĥ �̂ (30)

with Ĥ given by

Ĥ = KY1 +
e

2m
(ByŶ1 + BxŶ2 + BzŶ3). (31)

This is in a hyper-Hamiltonian form if K = 0. In general the flow is described by the
sum of two hyper-Hamiltonian flows, one with respect to the {Ŷi} structures and the other
with respect to the {Yi} structures—albeit only Y1 actually appears. Thus in the general case

7
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the flow is not simply hyper-Hamiltonian, but its structure allows us to use our factorization
principle of section 3.

For K = 0 the equation reduces to (∂i = ∂�i
)

∂tχ+ = ∂3Ĥ1 − ∂4Ĥ2 − ∂2Ĥ3

∂tχ− = ∂4Ĥ1 + ∂3Ĥ2 + ∂1Ĥ3

∂t ζ+ = −∂1Ĥ1 − ∂2Ĥ2 + ∂4Ĥ3

∂t ζ− = −∂2Ĥ1 + ∂1Ĥ2 − ∂3Ĥ3

(32)

where

Ĥ1 = e|�̂|2
4m

By, Ĥ2 = e|�̂|2
4m

Bx, Ĥ3 = e|�̂|2
4m

Bz. (33)

It should be noted that the order in which the χ±, ζ± enter in �̂ was chosen arbitrarily. It
is interesting to observe what happens when choosing a different order, i.e. defining

� =

⎛⎜⎜⎝
χ+

ζ+

χ−
ζ−

⎞⎟⎟⎠ , (34)

that is, using the second basis (15) and the correspondence (16). In this case (26) reads

∂t� =
[
KŶ1 +

e

2m
(ByY1 − BxY2 − BzY3)

]
�. (35)

Thus, in this representation the Pauli equation reads

∂t� = H� (36)

with H being given by

H = KŶ1 +
e

2m
(ByY1 − BxY2 − BzY3). (37)

That is, we have a role reversal of the two standard hyper-Hamiltonian structures: again
we get an equation in hyper-Hamiltonian form (this time with the Yi rather than the Ŷi complex
structures) if K = 0. In general the flow is still described by the sum of two hyper-Hamiltonian
flows, and the factorization principle applies.

For K = 0 the equation reduces, in this basis, to

∂tχ+ = ∂2H1 + ∂4H2 + ∂3H3,

∂t ζ+ = −∂1H1 + ∂3H2 − ∂4H3,

∂tχ− = ∂4H1 − ∂2H2 − ∂1H3,

∂t ζ− = −∂3H1 − ∂1H2 + ∂2H3

(38)

where

H1 = e|�|2
4m

By, H2 = −e|�|2
4m

Bx, H3 = −e|�|2
4m

Bz. (39)

It is worth stressing that the possibility of expressing the equations using the two standard
quaternionic structures is related to the following fact: if

P =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ , (40)

then P is an intertwining operator for the two standard representations of su(2) and hence for
the two standard hyper-Hamiltonian structures:

P(αY1 + βY2 + γ Y3)P
−1 = αŶ1 − βŶ2 − γ Ŷ3. (41)

8
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5. Hyper-Hamiltonian description of the Dirac equation

The proper formalism to discuss particles with spin 1/2 is provided by the Dirac equation
[9, 21, 25, 28]. In the massless case, it takes the form of the Majorana–Weyl equation.

We follow the convention and notation of [9]; in particular, the spacetime metric is given
by (+1,−1,−1,−1). Greek indices run from 0 to 3, latin indices from 1 to 3.

5.1. The Dirac equation

Let us start from the Dirac equation written in terms of the γ matrices,

(γ µpµ − mc)ψ = 0. (42)

Here ψ = (�+, �−)T is a bispinor (four complex components), and we work in the momentum
representation; hence �p can be considered as a constant. In fact, in what follows we will
consider the equation

[ih̄γ 0∂t − c(�γ · �p) − mc2]ψ = 0 (43)

with ψ depending only on t. This can also be written as

ih̄∂tψ = γ 0[c(�γ · �p) + mc2]ψ = [c(�p · �α) + mc2β]ψ (44)

We will consider two different representations for the Dirac equation: the standard and
the spinorial representations. Before tackling detailed computations, let us present two rather
obvious remarks.

Remark 10. There is no hope to find a representation of the full Dirac equation in terms of
only one quaternionic structure, essentially because γ matrices are four and Y (or Ŷ ) matrices
are only three.

Remark 11. The choice of one or another quaternionic structure depends on the order one
chooses to write the equations in matrix form (i.e. on the orientation of the spin space).
Anyway, for the full Dirac equation we will always get the whole set of complex structures of
one of the quaternionic structures and only one matrix of the other. This other matrix depends
on the representation used to write the γ matrices (it is not necessarily associated with the
mass term). In fact, it is related to the essentially nondiagonal pattern of γ matrices in any
4 × 4 representation (or, in other words, to the irreducibility property of the representation of
the Clifford algebra).

5.2. Dirac equation: standard representation

If we choose the standard representation of the γ matrices, we have

β =
(

σ0 0
0 −σ0

)
, �α =

(
0 �σ
�σ 0

)
. (45)

With this we write the Dirac equation for a spin-1/2 point particle in interaction with an
external electromagnetic field A = (, �A) as

ih̄
∂ψ

∂t
=

[
c�α ·

(
�p − e

c
�A
)

+ mc2β + eI
]
ψ. (46)

Here e is the charge of the particle and we write �π := �p − (e/c) �A. Hence (46) reads

∂tψ = − i

h̄
[c�α · �π + (mc2)β + e]ψ. (47)
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Using (45) and ψ = (�+, �−)T , this is in turn rewritten as

∂t

(
�+

�−

)
= − i

h̄

(
(mc2 + e)σ0 c�σ · �π

c�σ · �π −(mc2 − e)σ0

) (
�+

�−

)
. (48)

Recalling now (14), writing for short

K̂ := Ŷ2π
1 + Ŷ1π

2 + Ŷ3π
3 (49)

and understanding that the complex quantities �± ∈ C2 are represented by four-dimensional
real vectors,

�± = (
Re

(
�1

±
)
, Im

(
�1

±
)
, Re

(
�2

±
)
, Im

(
�2

±
))T

,

in which we are using (13), so that σ matrices will be represented according to (14), we can
therefore rewrite (48) in the form

∂t

(
�+

�−

)
=

(
[(mc2 + e)/h̄]Y1 −(c/h̄)K̂

−(c/h̄)K̂ −[(mc2 − e)/h̄]Y1

)(
�+

�−

)
. (50)

Thus the flow of (50), i.e. of the general Dirac equation, is the composition of two
hyper-Hamiltonian flows; these commute, as noted in section 3. The whole discussion of
section 3—in particular, the factorization principle—does therefore apply to the full Dirac
equation (strictly speaking, in the standard representation).

It is maybe, convenient to pass to variables ξ± = �+ ± �− ∈ R4. In terms of these we
have

h̄ξ̇+ = [(e)Y1 − cK̂]ξ+ + (mc2)Y1ξ−
h̄ξ̇− = [(e)Y1 + cK̂]ξ− + (mc2)Y1ξ+.

(51)

Remark 12. It is immediate to note that equation (51) for m = 0—also known as the
Majorana–Weyl equation—in the case  = 0 is therefore written in hyper-Hamiltonian form
with the use of only one standard quaternionic structure.

5.3. Dirac equation: spinor representation

Let us now choose instead the spinor representation for the γ matrices. Then

β =
(

0 σ0

σ0 0

)
, �α =

(�σ 0
0 −�σ

)
. (52)

We will now, for the sake of brevity, just consider the case  = 0 (or, equivalently).
We write again the wavefunction as � = (�+, �−)T and use K̂ also as above. Proceeding

as before, we get the Dirac equation as

∂t

(
�+

�−

)
=

(
−(c/h̄)K̂ [(mc2)/h̄]Y1

[(mc2)/h̄]Y1 (c/h̄)K̂

) (
�+

�−

)
. (53)

It is thus clear that again both structures appear, although one of them only in the mass
term (recall we are working in the Lorentz gauge). Thus the general Dirac equation in the
spinor representation is written as the sum of two commuting hyper-Hamiltonian flows, and
the discussion of section 3 applies. Note that the Majorana–Weyl equation would be written
in a simple hyper-Hamiltonian form (recall we assumed  = 0).

10
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Remark 13. One can pass from the standard to the spinorial representation by the unitary
transformation

U = 1√
2

(
σ 0 σ 0

σ 0 −σ 0

)
; (54)

indeed, γ
µ
st = U+

(
γ

µ
sp

)
U . Note that the transformation U is real.

Remark 14. The two standard hyper-Hamiltonian structures enter in the Dirac equation in an
asymmetric way; however—as for the Pauli equation—their role is reversed by just changing
the representation of the relevant matrices and vectors.

6. Separating the Dirac equation in hyper-Hamiltonian formalism

One would like to separate the Dirac equation into two equations, e.g. for the positive and
negative energy states. This is generally impossible, but can be done (via a recursive procedure)
up to some given order in a certain expansion parameter. There exists indeed ‘a systematic
procedure developed by Foldy and Wouthuysen, namely, a canonical transformation which
decouples the Dirac equation into two two-component equations: one reduces to the Pauli
description in the nonrelativistic limit; the other describes the negative-energy states’ (quoted
from [9], vol I, page 46).

In this way one obtains, in the general case, an equation which represents a perturbation
of a pair of separate equations, i.e. the coupling term between �+ and �− is of order εk , with
ε a suitable perturbation parameter.

A similar procedure, valid in the ultrarelativistic limit, was developed by Cini and
Touschek [12] (see also the recent extension by Mulligan [30]). These are considered below
in our hyper-Hamiltonian framework.

6.1. Unitary transformations and the Dirac equation

Once we operate with a unitary transformation ψ → ψ ′ = eiSψ with generator S, where
ψ = (�+, �−)T , the Dirac equation ih̄ψt = H0ψ (with H0 the Dirac Hamiltonian) is
transformed into

ψ ′
t = Hsψ

′ (55)

with Hs the transformed Dirac Hamiltonian,

Hs = e−iSH0 eiS + e−iS∂t (e
iS). (56)

With such a transformation one can transform the Dirac equation into a different form, which
may be more convenient in a given limit.

Here we will work in the free case for the ease of discussion; we refer to [21, 28] for the
general case.

The matrices Yi and Ŷi , as well as the β, αi , will be as above. We use the standard
representation for γ -matrices; the Dirac equation is written as(

�̇+

�̇−

)
= H

(
�+

�−

)
(57)

where, writing K = Ŷ2p
1 + Ŷ1p

2 + Ŷ3p
3,H is given by

H = 1

h̄

(
mc2Y1 −cK
−cK −mc2Y1

)
. (58)

11
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6.2. The Foldy–Wouthuysen transformation

The Foldy–Wouthuysen transformation is given by

UFW =
√

E + mc2

2E
I4 +

1

|�p|

√
E − mc2

2E
�γ �p, (59)

where E =
√

m2c4 + |�p|2c2, |�p|2 = (p1)2 + (p2)2 + (p3)2.
The transformation �FW = UFW� reads, written in our notation, as(

�FW
+

�FW
−

)
= ŨFW

(
�+

�−

)
(60)

where ŨFW is given by

ŨFW =
√

E + mc2

2E
I8 +

1

|�p|

√
E − mc2

2E

(
0 	

−	 0

)
; (61)

	 =
(

σ0p
3 σ 0p1 + iσ 2p2

σ0p
1 − iσ 2p2 −σ 0p3

)
, 	T = 	. (62)

This is an orthogonal transformation. The Dirac equation is written in the new variables as(
�̇FW

+

�̇FW
−

)
= ŨFWHŨT

FW

(
�FW

+

�FW
+

)
= E

h̄

(
Y1 0
0 −Y1

)(
�FW

+

�FW
+

)
(63)

Note that this makes use of only one quaternionic structure (actually, this is Hamiltonian).
In fact, this result can be read directly from the transformed Dirac equation under the Foldy–
Wouthuysen transformation, which is ih̄�̇FW = Eγ 0�FW. Using (14), we get

− i

(
σ0

−σ0

)
�

(
Y1

−Y1

)
(64)

and (63) follows.

6.3. The Cini–Touschek transformation

The Cini–Touschek transformation is

UCT =
√

E + |�p|c
2E

I4 − 1

|�p|

√
E − |�p|c

2E
�γ �p; (65)

the wavefunction transforms as(
�CT

+

�CT
−

)
= ŨCT

(
�+

�−

)
(66)

where, with 	 as above (62),

ŨCT =
√

E + |�p|c
2E

I8 − 1

|�p|

√
E − |�p|c

2E

(
0 	

−	 0

)
. (67)

As in the case of the Foldy–Wouthuysen transformation, this is an orthogonal transformation.
The Dirac equation is written in the new variables as(

�̇CT
+

�̇CT
−

)
= ŨCTHŨT

CT

(
�CT

+

�CT
−

)
= E

h̄|�p|
(

0 −K̂
−K̂ 0

) (
�CT

+

�CT
−

)
. (68)
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Again note that we need only one quaternionic structure (and actually get a Hamiltonian
system, see above).

As above, this result can be obtained from the transformed Dirac equation under the
Cini–Touschek transformation, which is ih̄�̇CT = [E/|�p|)]γ 0 �γ �p�CT. Using (14), we get

− iγ 0 �γ �p �
(

0 −K̂
−K̂ 0

)
(69)

and (63) follows.

6.4. The Mulligan transformation

In a recent paper [30], Mulligan has considered yet another transformation of this kind; we
would like to discuss this from our point of view.

Let N be the unitary matrix

N = 1√
2

(
σ0 σ0

−σ0 σ0

)
. (70)

Applying N to the standard representation of the γ -matrices, the new set of γ -matrices is
γ̃ µ = Nγ µN+. More explicitly, we have

γ̃ 0 =
(

0 −σ0

−σ0 0

)
, �̃γ =

(
0 �σ

−�σ 0

)
; (71)

this is the usual spinor representation up to a global minus sign, γ̃ µ = −γ
µ
sp. Note that

N �γN+ = �γ , and [N,UCT] = 0.
The Mulligan transformation UM can hence be understood as the Cini–Touschek

transformation applied to the spinor representation of the γ matrices (the original Cini–
Touschek transformation was applied to the standard representation of the γ matrices) because
N and the Cini–Touschek transformation commute.

In fact, the Cini–Touschek transformation can be written as

UCT =
√

E + |�p|c
2E

I4 − 1

|�p|

√
E − |�p|c

2E
�γsp �p. (72)

The Mulligan transformation is similarly written as

UM =
√

E + |�p|c
2E

N − 1

|�p|

√
E − |�p|c

2E
N �γ �p. (73)

The wavefunction transforms as(
�M

+

�M
−

)
= ŨM

(
�+

�−

)
(74)

and ŨM is

ŨM =
√

E + |�p|c
4E

(
I4 I4

−I4 I4

)
− 1

|�p|

√
E − |�p|c

4E

(
	 −	

	 	

)
. (75)

As in previous cases, this is once again an orthogonal transformation; the Dirac equation is
written in the new variables as(

�̇M
+

�̇M
−

)
= ŨMHŨT

M

(
�M

+

�M
−

)
= E

h̄|�p|
(−K̂ 0

0 K̂

) (
�M

+

�M
−

)
. (76)

Once again, we need only one quaternionic structure, and actually get a Hamiltonian system.
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Needless to say, the Dirac equation under the Mulligan transformation in the quaternionic
formulation can also be obtained in a direct way using (14):

�̇M = −i
E

h̄|�p|
(�σ �p 0

0 −�σ �p
)

�M, −i

(�σ �p 0
0 −�σ �p

)
�

(−K̂ 0
0 K̂

)
. (77)

7. Discussion and conclusion

A generalization of Hamiltonian dynamics, called hyper-Hamiltonian dynamics, was
introduced in previous work [18, 19]; its basic features were recalled in section 1.

The mathematical interest of hyper-Hamiltonian dynamics lies in the fact that it shares
several—in particular, geometrical—features with standard Hamiltonian dynamics still being
a proper extension of it. This also represents a significant improvement in connection with
integrable systems in that the presence of a hyper-Hamiltonian structure makes twice as
effective each constant of motion as far as reduction is concerned [19], as made explicit by
passing to so-called action–spin coordinates (as suggested by the name, a generalization of
action–angle ones).

The physical motivation behind the introduction of hyper-Hamiltonian dynamics lies
in substituting the symplectic structure of Hamiltonian dynamics with a spin structure; in
concrete terms, one would hope that hyper-Hamiltonian dynamics would be able to describe
the dynamics of particles with spin, and more precisely of their spin degrees of freedom.

This turns out to be impossible, at least in the ‘naive’ interpretation: it is not possible to
simply write the relevant equations as a hyper-Hamiltonian system, except in degenerate cases
(no electric field and/or zero mass).

In the present paper, we have proved that, nevertheless, the basic equations describing
spin degrees of freedom in both the non-relativistic (Pauli equation) and the relativistic
(Dirac equation) regimes can be (explicitly) written in the hyper-Hamiltonian setting. In
both cases, this was possible making use of the ‘standard’ hyper-Hamiltonian structures in
R4n, defined in section 2. This formulation was not in the ‘naive’ way, but required the use of
an equation corresponding to the sum of two hyper-Hamiltonian systems, and went through
a factorization principle—discussed and proved in section 3—which is a (maybe surprising)
physical application of a situation studied in general abstract terms by Walcher [34].

The feature behind this is the commutation of the matrices describing the two standard
hyper-Hamiltonian structures. This, in turn, can be ascribed to general features of quaternionic-
type real irreducible representations as stipulated by the real version of the Schur lemma [23],
and is thus a general feature associated with quaternionic structures and hence with any
realization of hyper-Hamiltonian dynamics.

As is well known, in practice the Dirac equation is most often studied using a number
of (unitary) transformations which have the property of separating it into a suitable limit, e.g.
into the low-energy limit (Foldy–Wouthuysen transformation) or into the high-energy one
(Cini–Tousheck or Mulligan transformations). Under such a transformation, each component
of the Dirac equation behaves as a ‘simple’ spin system, i.e. is described by a Pauli equation.
This extends to the hyper-Hamiltonian case, as we have shown by explicit computations in
section 6.

In conclusion, we have shown that the basic equations of spin dynamics can be described
in hyper-Hamiltonian terms, i.e. that hyper-Hamiltonian dynamics—actually, with standard
structures—applies to the description of spin dynamics.
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Several generalizations would be rather natural.

• Higher spin structures should correspond to hyper-Hamiltonian flow in R4n with n > 2.
Note that the basic mechanism at work in our discussion of the Dirac equation, i.e.
the factorization principle of section 3 for the flows associated with the two standard
hyper-Hamiltonian structures, would still work in this case.

• Related to this is the problem of passing from R8 � C4 internal space to a complex four-
dimensional hyper-Hamiltonian manifold. This should be quite possible, in particular
for manifolds obtained via momentum map reduction [20]. In fact, it was shown in [18]
that hyper-Hamiltonian dynamics goes through the momentum map reduction, so that a
hyper-Hamiltonian flow described in the original manifold or vector space will result in a
hyper-Hamiltonian flow in the quotient manifold.

• More generally, in the framework of hyper-Kahler manifolds obtained via momentum
map reduction [20], it is rather obvious that commuting hyper-Hamiltonian flows in the
original manifold will descend to commuting hyper-Hamiltonian flows in the quotient
manifold; thus our factorization principle will go unharmed through momentum map
reduction.

• Here we dealt with the free Dirac equation; it would be natural to also consider the case
where a magnetic field is present. Again we expect that no major difficulty arises, in
particular when approaching this problem via the Foldy–Wouthuysen transformation: in
this case, when making the usual perturbative expansion, one reduces to consider (at first
order) the Pauli equation, for which we have already shown that the presence of an EM
field does not harm the hyper-Hamiltonian representation of the dynamics.

• Finally, one would like to deal with field theory rather than with dynamics; this lies beyond
the limits of the present paper, but the result obtained here—i.e. the physical relevance
of hyper-Hamiltonian dynamics for the (finite-dimensional) dynamics of spin degrees of
freedom—provides motivation for this further step.

We trust these generalizations can be obtained—by ourselves or by some of the readers of the
present paper—in a near future.
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